If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(3x)^2=324
We move all terms to the left:
(3x)^2-(324)=0
a = 3; b = 0; c = -324;
Δ = b2-4ac
Δ = 02-4·3·(-324)
Δ = 3888
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3888}=\sqrt{1296*3}=\sqrt{1296}*\sqrt{3}=36\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-36\sqrt{3}}{2*3}=\frac{0-36\sqrt{3}}{6} =-\frac{36\sqrt{3}}{6} =-6\sqrt{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+36\sqrt{3}}{2*3}=\frac{0+36\sqrt{3}}{6} =\frac{36\sqrt{3}}{6} =6\sqrt{3} $
| (x^2)+16x+60=180 | | 5d-3d+8=3d | | 9c-7c=8 | | 0.6=h/20 | | 4=2x=x+1 | | 3/9=9/t | | -7d=2d-9 | | (6x-1)+(4x+1)+(4x-2)=180 | | 6(b+6)=60 | | -8=9-x/4 | | 1/4(-4x+6)=-1/5(60x+85) | | x^2)+16x+60=180 | | x+12/7=7 | | b/13=6 | | 5-3x=13.7 | | 63=x-17 | | –a/6+5=2. | | 82+76+x=180 | | -9=m=20 | | 12p+2=146 | | x=-20/2(-5) | | 7l+11l=360 | | 21-2x-4=13 | | 4(5n+7)-3n=3n(4n-9) | | 107+23+x=180 | | (x*x)+16x+60=180 | | -(8-10x)+3x-12=3(2x+5)+2x | | 90=x-55 | | 32=4a-9 | | 12p+2=145 | | 4+x-16=6 | | 4c−29=43 |